Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars
نویسندگان
چکیده
Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO2) fixation to achieve efficient xylose fermentation by the engineered Saccharomyces cerevisiae. Our results showed that the introduction of CO2 as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO2 to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.
منابع مشابه
Fermentation of corn ®bre sugars by an engineered xylose utilizing Saccharomyces yeast strain
The ability of a recombinant Saccharomyces yeast strain to ferment the sugars glucose, xylose, arabinose and galactose which are the predominant monosaccharides found in corn ®bre hydrolysates has been examined. Saccharomyces strain 1400 (pLNH32) was genetically engineered to ferment xylose by expressing genes encoding a xylose reductase, a xylitol dehydrogenase and a xylulose kinase. The recom...
متن کاملEfficient production of L-lactic acid from xylose by Pichia stipitis.
Microbial conversion of renewable raw materials to useful products is an important objective in industrial biotechnology. Pichia stipitis, a yeast that naturally ferments xylose, was genetically engineered for l-(+)-lactate production. We constructed a P. stipitis strain that expressed the l-lactate dehydrogenase (LDH) from Lactobacillus helveticus under the control of the P. stipitis fermentat...
متن کاملGenetic Engineering of Yeast for Efficient Biofuel Production
The global biofuels market is expected to rise from $82.7 billion in 2011 to $185.3 billion in 2021. Genetic engineering paves its way towards efficient biomass conversion into biofuel through metabolic manipulations. Present article is an effort to explore the role of Biotechnology engineering in Yeast as a tool towards efficient production of bioethanol through economically comprehensive rout...
متن کاملProduction of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective
Efficient xylose utilization is one of the most important pre-requisites for developing an economic microbial conversion process of terrestrial lignocellulosic biomass into biofuels and biochemicals. A robust ethanol producing yeast Saccharomyces cerevisiae has been engineered with heterologous xylose assimilation pathways. A two-step oxidoreductase pathway consisting of NAD(P)H-linked xylose r...
متن کاملProduction of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose.
Recent studies have proven ethanol to be the ideal liquid fuel for transportation, and renewable lignocellulosic materials to be the attractive feedstocks for ethanol fuel production by fermentation. The major fermentable sugars from hydrolysis of most cellulosic biomass are D-glucose and D-xylose. The naturally occurring Saccharomyces yeasts that are used by industry to produce ethanol from st...
متن کامل